If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+6z-36=0
a = 2; b = 6; c = -36;
Δ = b2-4ac
Δ = 62-4·2·(-36)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-18}{2*2}=\frac{-24}{4} =-6 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+18}{2*2}=\frac{12}{4} =3 $
| 2j-3.2=10.2 | | x/3+9=-2 | | 3t+7=-8* | | 4^-2x=42 | | 5x-(x-18)+2(x+15)=6 | | -9x+5=-7-9 | | 7p+8p−12=59 | | x/8=8.4/9.6 | | 3(1+x)=x+9 | | 38=2(y-6)-7y | | 3c+5.1=18.3 | | 12x+10=9x+22 | | 12x^2+2x-5=8 | | 2/7=4/r | | 1/2*(20x+8)-3=4x+2(3x+1 | | 150+2x=207 | | 3/m=7/8 | | 8x+7=54 | | 3.6+2j=5.6 | | 3/2+1/2•x=2x | | -4(t-3)-(t+2)=10 | | n/7=3/10 | | u-5+2u+2u=180 | | x(5x+22)=15 | | -9h-4h=29 | | 1-2x+6=4x-3 | | 3(x+15)=3(x+15) | | u-5-2u-2u=180 | | 2(5x-6)=3(x-1) | | 2a-14+3=9 | | -3-5y=20 | | 8/x=6/3 |